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Convective Storm Downdraft Outflows Detected by
NASA/MSFC's Airborne 10.6 um Pulsed Doppler Lidar System

1-0 INTRODUCTION

- In the summer of 1981 the NASA/MSFC's 10.6 ym co, Pulsed Doppler Lidar
System was mounted in a NASA CV990 aircraft as part of a program to demon—
strate and evaluate the lidar's capability to provide two dimensional wind
fields in a variety of atmospheric and topographical situations. Engineering
details and some preliminary examples of the wind data obtained have been
compiled in a document by Bilbro, et al., 1984. The aircraft operation is
illustrated in Figure 1 and the pattern of lidar shots that permits an
estimation of the 2-D wind field is shown in Figure 2.

To intercept storm outflows, the CV990 was flown -400 m (AGL) and within
5-10 km of the edge of the targeted convection. Some of the system param-
eters remained nearly constant for all the outflow experiments:

pulse length 330 m
aircraft true airspe=® 260-300 knots
aircraft altitude 400~600 m AGL
lidar range 8-12 xm

Except for system biases (which have been removed) each wind vector estimated
for a 330 m x 330 m square is totally independent of neighboring wind estim-
ates. Unless noted, no smoothing of the wind field is made. Therefore, the
coherence of the wind field estimates is a partial indication of the lidar
system performance. '

Participation in CCOPE provided NASA an opportunity to evaluate the
airborne lidar with the benefit of several sources of complementary and
supplementary observations such as radars, a rawinsonde network, a surface
station network, satellite imagery coverage and other aircraft measurements
(Figure 3). The following case studies attempt to bring together the Air-
borne Doppler Lidar System (ADLS) wind measurements with these other observa-
tions to demonstrate the flow visualization that is possible in regions of a
storm that are not easily accessed by previously available observational
tools. Where appropriate, physically significant conclusions are made;
however, these are mostly limited to kinematics because of the lack of
temperature and moisture measurements on time and space scales commensurate
with those of the lidar.

All of the CCOPE ADLS data were reviewed for measurements in the sub-
cloud region of active cumulus convection. On the 21st and 23rd of July 1981
there were several cases when the CV990 was flown in a manner very similar to
that shown in Figure 1. In total, nearly 600 km (x 10 km) of storm outflow
data were collected on Flights 16 and 17. 1In order to put these data in the
context of the general atmospheric conditions, synoptic maps, radar maps,
surface network data, and satellite imagery were consulted. The net result
is a set of unique visualizations of flows within the sub-cloud region,
substantiated on a few occasions by available comparisons with more conven-
tional wind measuring systems.
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2.0 CASE STUDISS
2.1 Yuly 2= 1981

Convective storm outflows were the primary targets of this flight mis-
sion. As shown in Figure 4, the interesting parts of the flight occured just
on or beyond the northeastern edge of the surface network thus minimizing the
usefulness of the surface network data. The satellite imagery does, however,
provide the cloud field context for the flight paths analyzed (Figure 5).

The precise navigation of aircraft data relative to the satellite data has
not been fully pursued. The benefits of such an effort would be minimal
since the cirrus cover prevents any detailed matching of the lidar derived
wind fields with individual cumulus features.

2.1.1 SynOptic Situation

The following is a quote from the 21 July CCOPE operational morning
forecast: "Air mass dry in low levels but steep temperature lapse rate. A
trough along the east border (of study area) should provide trigger for
TCU/CB NE-E (could be out of area). Mid-level ACCAS is interesting and could
build significantly by late afternoon." This forecast turned out to be
basically correct with most of the deep convection to the E and NE of the
CCOPE surface network.

2 1=2 Storm Characteristics

A Ra®ar time history

Figure 6 presents the SWR-75 echo time history between 2300
and 0015 ZST. During that time period the storm system went through
o cycle of-50~-60 dbz maximums to <40 dbz maximums and then back to
J0-60 dbz maximums. The western ends of runs 11, 12 and 13 are just
on the edge of the 150 km radar range limit.

B so>face Network Observations

Unfortunately this storm was intercepted when it was just on the
northeastern edge of the CCOPE surface network. In Figure 7 a
streamline analysis at 2315 Z indicates a line of divergent flow
originating about 20 km to the north of the CV990 flight track (Flight
16 Run 11). Although the alignment is not perfect, the center of the
divergence appears to be associated with the cold pools of air just on
the network boundary and the presence of strong radar returns (55 dbz)
from convection just north of the area. All these facts are consis-
tent with the perception of the scientific observers onboard the
CV990 that a rather active storm with strong outflows was being
sampled.

The next time the CV990 was back over the CCOPE network was
during the first part of Run 13 (Figure 8). The flight track ™as
directly over an outflow region seen as a core of divergence within
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13 and 14 are superimposed.
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tracks for ApL runs 11,
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GRID SPACING: 5.36 KM MONTANA MESOSCALE NETWORK DATA

5 MINUTE AVERAGE PRIOR TO 81 07 21 2315 2
STREAMLINES

_ _TEMPERATURE (C)

Fig. 7. CCOPE Mesoscale Network streamline ( ) and temperature (=-=-=-) W
fields for 2315 Z on 21 July 1981. Both E-W and N-S scale are 1" =
17.5 km. ‘
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GRID SPACING: 5.36 KM MONTANA MESOSCALE NETWORK DATA

5 MINUTE AVERAGE PRIOR TO 81 07 21 234
STREAMLINES > e

————DIVERGENCE (E-4 SEC-1)

e v Ry

by \, 20N ! é 3 A .
At LA

\ N\,

Fig. 8. CCOPE Mesoscale Network streamline ({ , divergence (: ) and
convergence (----) fields for 2345 Z on 21 July 1981. 1" = 17.5 km.
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the surface notworx an® assOciate® ™ith a 50-60 dbz radar ocho
(Figure 6).

Satollite Imagery

A review of the satellite visible and IR imagery for the period
1600~0200 Z indicated that the storm complex targeted for observa-
tions by the DLV was becoming organized around 1930-2000 Z, nearly
3.5 hours before the aircraft measurements (Figure 9). The storm
system moved ENE and by 0200 was completely out of the CCOPE network
and had become a part of a much larger complex stretching from
Nebraska through the Dakotas (Figure 10). A visible image (2330 2)
taken during the time the DLV was in operation was shown in Figure
5. The cirrus obscures the detail of the convective cells and their
organization, making it ‘impossible to be precise in associating any
ADLS wind flow with the responsible cumulus tower.

Airborno DOpplor Liar System

The CV990 arrived on the SW flank of the storm at 2305 2 and
then flew four separate runs (11, 12, 13 and 14) which encircled the
most active (western) portion of the convective system (See Figure
5). To facilitate the discussion of the ADLS wind fields, three
levels of display are used. For general flow features, the full
‘resolution (330 meters) data set is averaged over a 2 km grid.
Divergence and vorticity fields are also calculated at this resolu-
tion. Higher resolution divergence and vorticity fields are
available with 1 km averaging--and are presented on a selective
basis. For the highest resolution of the wind vector fields, the
.33 km data with no smoothing is used. This full resolution
product provides evidence of how consistent the wind vector
estimates are in the presence of flow features such as storm out~-
flows.

Looking back at Figures 7 and 8 we see a boundary layer flow
dominated by centers of convergence and divergence which are ex-
pected in the presence of deep convection. As the CV990 flew around
the NE corner of the CCOPE surface network, the general sense of the
flow at 450 m AGL was from WNW on the southern legs (11 and 13)
and from SSE along the northern legs (12 and 14). This is con-
sistent with the difluent flow seen with surface network during the
period 2300~-0015 2.

In: Figure 11 (2 km averaged winds for run 11) four flow features
are identified. At location A the winds dropped from 20-30 kts to
<4 kts. This was followed by a 15 km wide northerly flow (B) of 15=-
20 kts with a 1°% temperature drop (measured on the aircraft) and
then a return to 20-30 kts westerlies. At C there was again a weak
northerly intrusion, followed by the strong westerlies. In area D
there occurs one of the strongest perturbations seen on the outflow
flights. The 1 km averaged wind, divergence and vorticity fields
are shown in Figure 12. 1In general, there is convergence (negative
numbers in 12B) ahead of the outflow, divergence inside its
boundaries, and vorticity of both signs along its edges. The limit
of meaningful values is around 10-12 km from the aircraft.
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Fig. 12 Airborne Doppler Lidar wind (12R), divergence (12B), and vorticity
(12C) fields obtained near feature D in Figure 11 during Flight 16,
Run 11 on 21 July 1981, Vector and scalar fields are 1 km averages
of the 330 meter full resolution data set. The l':ag:lo (x 10) of the
divergences and vorticities are displaved with the sign denoting
the sense of the differentials_&ige. =25 in the divergence data is
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Although the kinematic picture presented by the lidar data is
not unexpected and conforms to our general understanding of storm
outflows, this case demonstrates the consistent nature of the
Doppler lidar wind measurements in the vicinity of significant flow
structures. Even without any averaging (Figure 13), the individual
and independent wind estimates provide a coherent and immediately
interpretable presentation of the horizontal wind fields. The. full
resolution display also alerts one to the occurrance of large and
not always random errors that could produce not so obvious errors in
the averaged fields.

For Run 12 (400-600 meters AGL) the CV9900 turned to a WNW
heading and tried to stay just to the north of the main convection.
In Figure 14 three features are labeled. Within region A there is
the general background westerly flow of 10-12 kts. 1In Region B we
see a relatively weak (7-8 kts) northerly flow with a shape similar
to that of feature D on Run 11. The aircraft temperature probe data
are provided along the flight track. From these data the flow at B
is seen to be slightly cooler (-.6°C) than the air to the east and
west of it. The edge of a stronger outflow is labeled as C.
Fifteen km to the west of point C the aircraft measured temperature
drops 5.5°C and the aircraft INS winds increase to 28-32 kts from
the SSW. The lidar was measuring 30 kts in the same area. For the
next 50 km the flow remained strong (>15 kts) and slowly backed from
SSW to SSE. This pattern is consistent with a downdraft outflow
from the convective complex detected by the SWR-75 radar.

A closer examination of the outflow boundary at point C in
Figure 14 is provided in Figure 15 where the 1 km vector, divergence
and vorticity fields are displayed. Note the strong convergences as
the northerly outflow runs into the generallg westerly flow and also
the generation of an extensive (200 - 400 km®) area of negative
vorticity.

After flying around the western edge of the storm, Run 13 began
with the CV990 on a heading of 135° and at an altitude of 400 meters
AGL. The 2 km average wind field is presented in Figure 16.
Although there are many details in the flow, two features have been
singled out for high resolution. 1In region A there is a collision
of a strong westerly flow (25-30 kts) with a weaker (15-20 kts) but
organized northerly flow. The 1 km wind vector, divergence and
vorticity fields in this region are shown in Figure 17. As
annotated in Figure 17, the aircraft temperature sensors measured
little change in temperature at this intersection.

In region B there is another zone of convergence which is shown
in 1 km resolution (Figure 18). Once again there is significant
structure in the wind field without an obvious correlated horizontal
temperature structure. Around the southern edge of the storm, the
strong winds at 500 m AGL appear to be more westerly with distance
from the radar echo region. Without knowing the thermal and kinetic
fields below the flight level, it can be only conjectured that the
outflows may be shallow and quite cold with strong decoupling from
the overlying air. This decoupling could lead to accelerations in
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Fig. 15. Airborne Doppler Lidar 1 km averaged wind vectors (15a), divergence
(15B), and vorticity fields (15C) for feature C in Figure 14. See
Figure 12 caption for further explanation.
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Fig. 17. Airborne Doppler Lidar 1 km averaged wind vectors (173), divergence
{17B), and vorticity fields (17C) for feature A in Figure 16.
Temperatures measured onboard the NASA CV990 are presented along
the aircraft flight track.
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Fig. 18.

Airborne Doppler Lidar 1 km average wind vector (18a), divergence
(18B), and vorticity .fields (18C) for feature B in Figure 16.

Temperatures measured onboard the NASA CV990 are presented along
the aircraft flight track.
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the region above the ocotf 1& aiv—-i. iMcrease® Hesiirly com-
ponents.

Because the plotted values of divergence and vorticity are not
additive, it is difficult to tell at a glance whether these quan-
tities are collectively reasonable. For example, visual inspection
of Figures 15 and 17 may suggest that there is significantly more
positive vorticity measured on Run 13 along the southern flank of
the storm than on Run 12 along the northern flank. Histograms of
the vorticity values within 10 km of the flight track are plotted in
Figure 19. The net result is that the average vorticity for Run 12
was 1.43 x 1073 s™1; for Run 13 it was 2.13 x 10°° s l--not as large
a difference as it may have appeared.

A second pass (Run 14) along the northern flank of the eastward
moving storm system was done about 45 minutes after Run 12. 1In
Figure 20 we see a consistent southerly flow with few recognizable
convergence zones. After making Run 14 attention was directed
toward some growing towers to the north and no further sampling on
the main storm was made.

2.2 <uly 23, 19%1

July 23 was a CCOPE-VAS experiment day when five rawinsonde stations in
eastern Montana were operated in support of an intensive period of VISSR
Atmospheric Sounder (VAS) observations. Due to misprogramming of the scanner
on the GOES satellite, the VAS coverage was never far enough north to cover
the area in which the storm outflows occured. However, the routine (30
minute) visible and infrared satellite imagery taken during the airborne
lidar study period were obtained and considerable effort was made to match
satellite and aircraft navigation data. Whereas the outflows on 21 July 1981
were presented primarily to demonstrate the lidar flow visualization
capabilities in the boundary layer regions of convective storms, the outflows
on 23 July 1981 were examined for possible clues tc the merger and evolution
of the severe storms that began in SE Montana and propagated into the Dakotas
producing heavy rains and large hail.

Z.2=1 Synoptic Situation

The surface and 500 mb maps for 1200 Z 23 July 1981 and 0000 Z 24 July
1981 are shown in Figures 21 and 22. During the period of airborne lidar
observations (2200-2300 2) a cold front had pushed to within a 200 km of the
storm on the Montana-South Dakota (M/SD) boundary. The surface winds in the
undisturbed region east of the front were easterly around 10-15 kts.

2.2.2 Sstorm Characteristics

A. Radar time histories

The early phases of the M/SD storm occurred just within range of
the Skywater surveillance radar (Figure 23). However, at the time
the CV990 was flying the outflow mission (2200-2300 Z) the storm was
just moving out of radar range so that only the north-western part

3
4
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of the complex was being detected. The 2230 Z radar echo map was
used as an overlay on the satellite imagery. At this time 50-60 dbz
returns were recorded by ground radar while airborne observers
commented on "separate beautiful clouds" growing side-by~side. The
second cloud complex was just to the southeast of the one being
sensed by the SWR-75.

Sorface Network Observations

Unfortunately the storm being studied by the airborne lidar
moved beyond the eastern boundaries of the surface network (Figure
24). However, the surface data showed evidence that, contrary to
the synoptic analysis, the cold front may have passed through the
CCOPE area prior to 0000 Z. Note in Figure 25 that the wind shift
from southeasterly to northerly and moderate temperature drops of 2
- 5% progressed from the NW to the SE as would be expected with a
frontal passage. In the extreme SE corner of the CCOPE area,
further temperature drops of up to 9% (2200 Z) were recorded during
the time that the CV990 was on runs 7 and 8 (Figure 26).

Satellite Imagery

The evolution of the Montana/South Dakota storm as seen in
the satellite visible imagery is presented in Figures 27 to 33. The
focus of the airborne observation was on the "B" portion of the
storm complex with special interest in the bridge clouds that formed
around 2230. After the airborne lidar mission period the "A" and
"B" developments merged and moved eastward with further development
on the S~SW edge of the complex.

Airborne Doppler Li®ar System

At 2213 the CV990 began a NE-SW run down the northern flank of
the "B" portion of the storm. The lidar was scanning underneath a
rather continuous cloud mass punctuated with rain showers. At 2230
the aircraft turned back to an easterly heading that took it right
between the two towering developments. To provide the general sense
of the wind field as detected by the airborne lidar, the 330 m wind
vectors were averaged to 2 km resolution and overlayed on the
visible cloud imagery (2230) and, to the extent available, the
Skywater radar echo map (Figure 34). The length of the arrows in
Figure 34 are all equal; only the direction is to be taken as
information. Several features in that figure need to be high-
lighted, starting in the upper right and moving counterclockwise:

1) the undisturbed flow is from the east, suggesting that this
convection was just. ahead of or above the cold front,

2) near the areas of strong radar echo returns the winds show
deflection consistent with rain shaft divergent outflows,

z) the small cloud along the left border of the figure is part of an
"arc" of clouds that can best be seen on a film loop of satellite
imagery between 2200 and 2400 GMT, and
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4) on the easterly track, strong outflow from the north was
encountered and as shown seemed to be limited to the region where
new convection was being detected by satellite. The strength of
this outflow was ~35-45 knots.

The divergence and vorticity fields calculated from the 2 km resolu~
tion lidar wind fields are presented in Figures 35 and 36. It is
difficult to say much about these calculated quantities except that
they are coherent on scales of 10-20 km and are of reasonable mag-
nitude (-10"° = 10-% s™l) for convective areas.

Much more detail is available with the 330 m resolution lidar
wind data. Regions noted as "1" and "2" in Figure 34 are blown up
to full resolution in Figures 37 and 38.

From the satellite imagery we note that around 2230 Z a line of
new cells was forming between the two major storms. With the ADLS,
a very strong (-40 kts) outflow from the northern complex was
detected directly underneath these new cells. Subsequent satellite
imagery documents a merger of the two storms and the evolution into
a much larger system. Without temperature and vertical velocity
information it is left to conjecture that the outflows were
responsible for the line of "bridge" clouds which appeared to
participate in the development of a more extensive storm entity.

2 O SUMMARY

Wind data obtained with the NASA/MSFC's Airborne Doppler Lidar System
during the CCOPE (1981) have provided several examples of the two-dimensional
nature of vector and scalar fields in the sub-cloud layer near deep-
precipitative convection. The ADLS has demonstrated its ungiue ability to be
flown to an area of interest and to cobtain a 10-15 km wide map of the hor-
izontal wind field with 330 m spatial resolution. The accuracy of the ADLS
measurements remains difficult to assess due to the non-conventional manner
in which the winds are obtained. However, there has been good (or reason-
able) agreement on every occasion that a comparison could be made with sur-
face anemometer, aircraft INS winds or rawinsonde winds.

On the two days (21 and 23 July 1981) during the CCOPE period, the ADLS
"storm outflow"” observations lead to the following conclusions regarding the
ADLS performance as well as the atmospheric phenomena encountered:

1) the ADLS can be easily navigated near and n highly convective
regions to obtain data for severe subclou® layer storm features;

2) the useful range of the two-dimensional wind field measurements is
between 10 and 15 km to the left of the aircraft track;

2) the coherence between neighboring {but totally independent) wind
vector, divergence and vorticity measurements is reason for relying
on the ADLS products to describe kinematic features with length
scales near 700 m;
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4)

5)

6)

7)

h4e

the physical interpretation of atmospheric situations sampled by the
ADLS is limited by the lack of thermal/moisture data with similar
resolution and knowledge of the vertical context of the horizontal
wind measurements;

however, the CCOPE ADLS data show that some outflows are organized
with horizontal dimensions of 50-75 km even though the nearby radar
echo fields show precipitation zones with 5-10 km dimensions;

on other occasions with similar satellite observed cloud type, size
and organization, the general subcloud layer flow is characterized
by many interacting features having 10-20 km horizontal dimensions;
and

there is some suggestion that on occasion the stability of the
outflow current may lead to a decoupling with the winds above it to
the extent that the convergence patterns above the outflows (e.g.
600 m) are not aligned with those nearer the surface (e.g. 200 m).

In future programs where the ADLS is used to probe the atmosphere in the
vicinity of deep convection, there should be an effort to obtain real-time
satellite and radar products on board the aircraft to aid in navigating the
aircraft to areas where outflows (or inflows) are most likely to be occuring.
More time can be spent documenting the flows rather than searching for them.
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